NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 66 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Pelaez, Kevin – Journal of Educational Data Mining, 2019
Higher education institutions often examine performance discrepancies of specific subgroups, such as students from underrepresented minority and first-generation backgrounds. An increase in educational technology and computational power has promoted research interest in using data mining tools to help identify groups of students who are…
Descriptors: At Risk Students, College Students, Identification, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Cui, Yang; Chu, Man-Wai; Chen, Fu – Journal of Educational Data Mining, 2019
Digital game-based assessments generate student process data that is much more difficult to analyze than traditional assessments. The formative nature of game-based assessments permits students, through applying and practicing the targeted knowledge and skills during gameplay, to gain experiences, receive immediate feedback, and as a result,…
Descriptors: Educational Games, Student Evaluation, Data Analysis, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Morsy, Sara; Karypis, George – Journal of Educational Data Mining, 2019
In order to help undergraduate students towards successfully completing their degrees, developing tools that can assist students during the course selection process is a significant task in the education domain. The optimal set of courses for each student should include courses that help him/her graduate in a timely fashion and for which he/she is…
Descriptors: Undergraduate Students, Grade Point Average, Course Selection (Students), Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Eglington, Luke G.; Pavlik, Philip I., Jr. – Journal of Educational Data Mining, 2019
In recent years, there has been a proliferation of adaptive learner models that seek to predict student correctness. Improvements on earlier models have shown that separate predictors for prior successes, failures, and recent performance further improve fit while remaining interpretable. However, students who engage in "gaming" or other…
Descriptors: College Students, Student Behavior, Models, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Rafferty, Anna N.; Williams, Joseph Jay; Ying, Huiji – Journal of Educational Data Mining, 2019
Randomized experiments can provide key insights for improving educational technologies, but many students may experience conditions associated with inferior learning outcomes in these experiments. Multiarmed bandit (MAB) algorithms can address this issue by accumulating evidence from the experiment as it runs and modifying the experimental design…
Descriptors: Mathematics, Statistical Analysis, Educational Experiments, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Taub, Michelle; Azevedo, Roger – Journal of Educational Data Mining, 2018
Self-regulated learning conducted through metacognitive monitoring and scientific inquiry can be influenced by many factors, such as emotions and motivation, and are necessary skills needed to engage in efficient hypothesis testing during game-based learning. Although many studies have investigated metacognitive monitoring and scientific inquiry…
Descriptors: Metacognition, Undergraduate Students, Student Behavior, Scientific Research
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Shitian; Mostafavi, Behrooz; Barnes, Tiffany; Chi, Min – Journal of Educational Data Mining, 2018
An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students' behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address…
Descriptors: Teaching Methods, Markov Processes, Decision Making, Rewards
Peer reviewed Peer reviewed
Direct linkDirect link
Paassen, Benjamin; Hammer, Barbara; Price, Thomas William; Barnes, Tiffany; Gross, Sebastian; Pinkwart, Niels – Journal of Educational Data Mining, 2018
Intelligent tutoring systems can support students in solving multi-step tasks by providing hints regarding what to do next. However, engineering such next-step hints manually or via an expert model becomes infeasible if the space of possible states is too large. Therefore, several approaches have emerged to infer next-step hints automatically,…
Descriptors: Intelligent Tutoring Systems, Cues, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Kai, Shimin; Almeda, Ma. Victoria; Baker, Ryan S.; Heffernan, Cristina; Heffernan, Neil – Journal of Educational Data Mining, 2018
Research on non-cognitive factors has shown that persistence in the face of challenges plays an important role in learning. However, recent work on wheel-spinning, a type of unproductive persistence where students spend too much time struggling without achieving mastery of skills, show that not all persistence is uniformly beneficial for learning.…
Descriptors: Decision Making, Models, Intervention, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Pardos, Zachary A.; Dadu, Anant – Journal of Educational Data Mining, 2018
We introduce a model which combines principles from psychometric and connectionist paradigms to allow direct Q-matrix refinement via backpropagation. We call this model dAFM, based on augmentation of the original Additive Factors Model (AFM), whose calculations and constraints we show can be exactly replicated within the framework of neural…
Descriptors: Q Methodology, Psychometrics, Models, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Mao, Ye; Lin, Chen; Chi, Min – Journal of Educational Data Mining, 2018
Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling…
Descriptors: Prediction, Pretests Posttests, Bayesian Statistics, Short Term Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Goldin, Ilya; Galyardt, April – Journal of Educational Data Mining, 2018
Data from student learning provide learning curves that, ideally, demonstrate improvement in student performance over time. Existing data mining methods can leverage these data to characterize and improve the domain models that support a learning environment, and these methods have been validated both with already-collected data, and in…
Descriptors: Predictor Variables, Models, Learning Processes, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Kerry J.; Meir, Eli; Pope, Denise S.; Wendel, Daniel – Journal of Educational Data Mining, 2017
Computerized classification of student answers offers the possibility of instant feedback and improved learning. Open response (OR) questions provide greater insight into student thinking and understanding than more constrained multiple choice (MC) questions, but development of automated classifiers is more difficult, often requiring training a…
Descriptors: Classification, Computer Assisted Testing, Multiple Choice Tests, Test Format
Peer reviewed Peer reviewed
Direct linkDirect link
Mühling, Andreas – Journal of Educational Data Mining, 2017
This article presents "concept landscapes"--a novel way of investigating the state and development of knowledge structures in groups of persons using concept maps. Instead of focusing on the assessment and evaluation of single maps, the data of many persons is aggregated and data mining approaches are used in analysis. New insights into…
Descriptors: Concept Mapping, Data Collection, Electronic Publishing, Educational Theories
Peer reviewed Peer reviewed
Direct linkDirect link
Dan, Alex; Reiner, Miriam – Journal of Educational Data Mining, 2017
One of the recommended approaches in instructional design methods is to optimize the value of working memory capacity and avoid cognitive overload. Educational neuroscience offers novel processes and methodologies to analyze cognitive load based on physiological measures. Observing psychophysiological changes when they occur in response to the…
Descriptors: Brain Hemisphere Functions, Diagnostic Tests, Cognitive Ability, Psychophysiology
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5