NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sevian, Hannah; Couture, Steven – Chemistry Education Research and Practice, 2018
Problem solving is lauded as beneficial, but students do not all learn well by solving problems. Using the resources framework, Tuminaro J., and Redish E. F., (2007), Elements of a cognitive model of physics problem solving: Epistemic games, "Physical Review Special Topics-Physics Education Research," 3(2), 020101 suggested that, for…
Descriptors: Problem Solving, Physics, Science Instruction, Educational Games
Peer reviewed Peer reviewed
Direct linkDirect link
Segedinac, M. T.; Horvat, S.; Rodic, D. D.; Roncevic, T. N.; Savic, G. – Chemistry Education Research and Practice, 2018
This paper proposes a novel application of knowledge space theory for identifying discrepancies between the knowledge structure that experts expect students to have and the real knowledge structure that students demonstrate on tests. The proposed approach combines two methods of constructing knowledge spaces. The expected knowledge space is…
Descriptors: Science Instruction, Chemistry, Knowledge Level, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Ouasri, Ali – Chemistry Education Research and Practice, 2017
This paper investigates the difficulties that Moroccan pupils (18-19) of the second Baccalaureate year encountered in solving chemical equilibrium problems relating to ethanoate ions' reactivity with water and methanoic acid, and to copper-aluminum cells. The pupils were asked to provide answers to questions derived from two problems. The…
Descriptors: Foreign Countries, Late Adolescents, Chemistry, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Irby, Stefan M.; Phu, Andy L.; Borda, Emily J.; Haskell, Todd R.; Steed, Nicole; Meyer, Zachary – Chemistry Education Research and Practice, 2016
There is much agreement among chemical education researchers that expertise in chemistry depends in part on the ability to coordinate understanding of phenomena on three levels: macroscopic (observable), sub-microscopic (atoms, molecules, and ions) and symbolic (chemical equations, graphs, etc.). We hypothesize this "level-coordination…
Descriptors: Chemistry, Formative Evaluation, Graduate Students, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Broman, Karolina; Parchmann, Ilka – Chemistry Education Research and Practice, 2014
Context-based learning approaches have been implemented in school science over the last 40 years as a way to enhance students' interest in, as well as learning outcomes from, science. Contexts are used to connect science with the students' lives and to provide a frame in which concepts can be learned and applied on a…
Descriptors: Chemistry, Science Instruction, Teaching Methods, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Stamovlasis, Dimitrios – Chemistry Education Research and Practice, 2010
The aim of the present paper is two-fold. First, it attempts to support previous findings on the role of some psychometric variables, such as, M-capacity, the degree of field dependence-independence, logical thinking and the mobility-fixity dimension, on students' achievement in chemistry problem solving. Second, the paper aims to raise some…
Descriptors: Chemistry, Problem Solving, Robustness (Statistics), Multiple Regression Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Chandrasegaran, A. L.; Treagust, David F.; Waldrip, Bruce G.; Chandrasegaran, Antonia – Chemistry Education Research and Practice, 2009
A qualitative case study was conducted to investigate the understanding of the limiting reagent concept and the strategies used by five Year 11 students when solving four reaction stoichiometry problems. Students' written problem-solving strategies were studied using the think-aloud protocol during problem-solving, and retrospective verbalisations…
Descriptors: Stoichiometry, Protocol Analysis, Chemistry, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Crippen, Kent J.; Brooks, David W. – Chemistry Education Research and Practice, 2009
The case for chemistry instruction based on worked examples is presented, using a contemporary model of human learning. We begin by detailing human cognitive architecture and outlining the Interactive Compensatory Model of Learning (ICML). Through the ICML, the role of motivation, deliberate practice and feedback are detailed as key variables in…
Descriptors: Chemistry, Science Instruction, Epistemology, Learning Activities